
java.sun.com/javaone/sf

| 2004 JavaOne
SM

 Conference | BOF 1600 1

INSANE
A simple way to diagnose
memory leaks

Radim Kubacki
Petr Nejedly
Sun Microsystems, Inc.

| 2004 JavaOne
SM

 Conference | BOF 16002

Presentation Goal

This session describes a technique for
tracing heap memory from inside a
running application. It will describe how
to use this technique to locate memory
leaks, and how to write automated
memory consumption regression tests.

| 2004 JavaOne
SM

 Conference | BOF 16003

Agenda

The technique
─ Modes of operation
─ Tracing
─ Finding roots
─ Limitations

Usage
─ Heap evaluation
─ Regression testing
─ Post-problem analysis

Other tools

Conclusion

| 2004 JavaOne
SM

 Conference | BOF 16004

Agenda

The technique
─ Modes of operation
─ Tracing
─ Finding roots
─ Limitations

Usage
─ Heap evaluation
─ Regression testing
─ Post-problem analysis

Other tools

Conclusion

| 2004 JavaOne
SM

 Conference | BOF 16005

The technique

• Reflective walking of heap structures

• No JVM support required

• No application runtime overhead

• Has some limitations

Overview

| 2004 JavaOne
SM

 Conference | BOF 16006

The technique:
Modes of operation

• Tracing single structure
─ Invoked programmatically e.g. from a test
─ To find out / verify its size
─ To check for unexpected outgoing references

• Dumping whole heap
─ Invoked by user

─ listen on a port, hidden shortcut, ...
─ Needs a root set
─ Can analyze the dump later with any number
─ of innovative queries

| 2004 JavaOne
SM

 Conference | BOF 16007

The technique:
Example of the dump format

<insane>
...

<object id='1040' type='java.lang.String'
size='40'/>

<ref to='1040'
name='sun.misc.URLClassPath.USER_AGENT_

 JAVA_VERSION'/>
...

<object id='16fa' type='[C' size='48'
value='ULA-Java-Version'/>

<ref from='1040' to='16fa'
name='java.lang.String.value' />

...

</insane>

| 2004 JavaOne
SM

 Conference | BOF 16008

The technique:
Tracing

• Single tracing engine
─ BFS
─ Uses reflection to find reference fields
─ Have to be careful to not explore itself

• Filtering
─ Stop at known outgoing references
─ Skip the tracing-support objects
─ Skip weak references

• Reporting
─ Reports found objects and references
─ Can be processed directly or stored in a dump

| 2004 JavaOne
SM

 Conference | BOF 16009

The technique:
Engine

Queue.put(rootSet);

for (Object obj : queue) {
 if (filter(obj)) continue;

 for (Class cls : classesOf(obj)) {
 for (Field fld : cls.getDeclaredFields()) {
 Object inst = fld.get(obj);
 if (visitObject(inst)) queue.put(inst);
 visitReference(obj, inst, fld);
 }
 }
}

| 2004 JavaOne
SM

 Conference | BOF 160010

The technique:
Finding roots

• Root types:
─ Static references
─ Native references
─ Stack references

• No JVM support
─ Only static references are reachable for engine!
─ Stack references are rare in an idle application

• Loaded classes list
─ User classes from ClassLoader
─ System classes found during tracking
─ java.lang.instrument.Instrumentation

| 2004 JavaOne
SM

 Conference | BOF 160011

The technique:
Limitations

• Operating from inside of JVM
─ Not all root references available
─ Can't instrument itself
─ Can cause application code to be invoked
─ Operates in the same heap as the application
─ Nontrivial object identification

• Nonstandard tool

| 2004 JavaOne
SM

 Conference | BOF 160012

Agenda

The technique
─ Modes of operation
─ Tracing
─ Finding roots
─ Limitations

Usage
─ Heap evaluation
─ Regression testing
─ Post-problem analysis

Other tools

Conclusion

| 2004 JavaOne
SM

 Conference | BOF 160013

Usage:
Heap evaluation

• Parse the dump

• Comparing statistics
─ between several dumps during one run
─ throughout the development cycle

• Looking for interesting patterns
─ Empty maps
─ Strings with lot of redundant space
─ Redundant strings

• Attributing heap usage to subsystems

| 2004 JavaOne
SM

 Conference | BOF 160014

Usage:
Regression testing

• Trace a heap subgraph directly and verify its
size after some operation
─ NbTestCase.assertSize(msg, limit, object)

• Verify object is GCed, find references from
roots if not
─ WeakReference, gc(), generate and process dump

| 2004 JavaOne
SM

 Conference | BOF 160015

Usage:
Post-problem analysis

• Leave a hook in a production application

• If it grows during usage, dump the heap
─Auto-dump on OOME possible

• Perform queries on the dump
─ Statistics -> what to focus on
─ References from roots -> who holds onto an object
─ Known cache entry points -> cache limits

• Due to zero runtime overhead, you can check
the heap even in production environment

• Not limited to memory leak analysis

| 2004 JavaOne
SM

 Conference | BOF 160016

Agenda

The technique
─ Modes of operation
─ Tracing
─ Finding roots
─ Limitations

Usage
─ Heap evaluation
─ Regression testing
─ Post-problem analysis

Other tools

Conclusion

| 2004 JavaOne
SM

 Conference | BOF 160017

Other tools

• Usual profilers

• hprof + HAT

• HeapRoots

• JFluid

| 2004 JavaOne
SM

 Conference | BOF 160018

Agenda

The technique
─ Modes of operation
─ Tracing
─ Finding roots
─ Limitations

Usage
─ Heap evaluation
─ Regression testing
─ Post-problem analysis

Other tools

Conclusion

| 2004 JavaOne
SM

 Conference | BOF 160019

Conclusion

• Use proper tool for the purpose

• Can analyze the heap even in production
environment

• Can check any heap structure

• Can write memory unit tests

| 2004 JavaOne
SM

 Conference | BOF 160020

For More Information

• URLs:
─ http://performance.netbeans.org/

• The NetBeans CVS
─ :pserver:anoncvs@cvs.netbeans.org/cvs
─

| 2004 JavaOne
SM

 Conference | BOF 160021

Q&A

21

java.sun.com/javaone/sf

| 2004 JavaOne
SM

 Conference | BOF 1600 22

INSANE
A simple way to diagnose
memory leaks

Radim Kubacki
Petr Nejedly
Sun Microsystems, Inc.

